Diffratometerdaten. An der IBM 370/145 des Fachbereichs Geowissenschaften der Universität Marburg dienten uns folgende Fortran-Programme: D. F. High, Program zur Fourier-Synthese; W. R. Busing, K. O. Martin & H. A. Levy, *ORFLS*.

Literatur

BENT, H. A. (1961). Chem. Rev. 61, 275-311.

- BOER, F. P., NEUMAN, M. A., ROTH, R. J. & KATZ, T. J. (1971). J. Amer. Chem. Soc. 93, 4436–4442.
- FRITCHIE, C. J. (1966). Acta Cryst. 20, 27-36.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.

GÜNTHER, H. (1970). Tetrahedron Lett. S. 5173-5176.

- HANSON, H. P., HERMAN, F. D., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040–1044.
- HOFFMANN, R. (1970). Tetrahedron Lett. S. 2907-2909.
- HOFFMANN, R. & DAVIDSON, R. B. (1971). J. Amer. Chem. Soc. 93, 5699–5705.
- MEESTER, M. A., SCHENK, H. & MACGILLAVRY, C. H. (1971). Acta Cryst. B27, 630-634.
- PERST, H. (1970). Tetrahedron Lett. S. 4189-4192.
- RODGERS, T. R. & HART, H. (1969). Tetrahedron Lett. S. 4845-4848.
- SCHUSTER, D. I., PRABHU, K. V., ADCOCK, S., VAN DER VEEN, J. & FUJIWARA, H. (1971). J. Amer. Chem. Soc. 93, 1557–1558.
- SEIFERT, W. J., PERST, H. & DANNENBERG, W. (1973). Tetrahedron Lett. S. 4999–5002.

Acta Cryst. (1975). B31, 541

Etude Structurale de la Phase 'Mn₈Si₂C'

PAR P. SPINAT, C. BROUTY, A. WHULER ET P. HERPIN

Laboratoire de Minéralogie-Cristallographie associé au CNRS, Université de Paris VI, Tour 16, 4 Place Jussieu, 75230 Paris Cedex 05, France

(Reçu le 5 juillet 1974, accepté le 1 octobre 1974)

The crystal structure of the 'Mn₈Si₂C' phase has been determined by single-crystal X-ray diffraction analysis. The lattice constants are a=6.4492 (5), b=6.5187 (7), c=9.944 (2) Å, $\alpha=84.709$ (8), $\beta=$ 99.588 (8), $\gamma=119.979$ (8)° and the space group is P1 with 32 atoms in the unit cell. The structure has been determined by direct methods and refined by full-matrix least-squares analysis to a final R of 0.12, based on 2027 reflexions observed with the diffractometer. The 'Mn₈Si₂C' phase is related to intermetallic complex phases such as Laves phases of the type MgZn₂ and belongs to the family of cementite carbides. There are close similarities between the structural arrangement in the Mn₅SiC phase and 'Mn₈Si₂C' phase but in the latter the presence of a square 'tile' signifies a mixed Mn-Si site. This structure allowed us to interpret the (Mn_{1-x}Mo_x)₈Si₂C and (Mn_{1-x}Fe_x)₈Si₂C solid solutions and their limits.

Introduction

L'étude du diagramme ternaire Mn–Si–C par Sénateur, Spinat & Fruchart (1965) a permis de mettre en évidence deux nouveaux composés magnétiques de formules Mn_5SiC et ' Mn_8Si_2C '.

La structure de la phase Mn_5SiC a été établie à l'aide des rayons X par Spinat, Fruchart, Kabbani & Herpin (1970), et précisée par diffraction de neutrons (Spinat, 1971). Le composé ' Mn_8Si_2C ', qui présente une solution solide totale avec le fer, est non stoechiométrique. La maille, de symétrie triclinique, a été déterminée par Spinat, Sénateur, Fruchart & Herpin (1972).

La présente étude a pour but de définir la structure de la phase ' Mn_8Si_2C ' et de la comparer aux arrangements atomiques des phases intermétalliques complexes décrits par Frank & Kasper (1958, 1959), plus particulièrement à ceux des composés Mn_5SiC et ' Mn_5Si' – phase γ – (Sénateur *et al.*, 1965; Shoemaker & Shoemaker, 1971).

Méthodes expérimentales

Le cristal utilisé a été obtenu lors d'une préparation correspondant à la composition Mn_8Si_2C . Les synthèses sont effectuées à 950 °C par diffusion thermique dans l'état solide en ampoule de silice vide d'air, à partir d'éléments de haute pureté pris à l'état pulvérulent. Les données concernant le cristal sont les suivantes:* a=6,4492 (5); b=6,5187 (7); c=9,944 (2) Å; $\alpha=84,709$ (8)°; $\beta=99,588$ (8)°; $\gamma=119,979$ (8)°; V=357,05 Å³; $D_{mes}=6,71\pm0,02$; $\mu=206$ cm⁻¹ (K α Mo). Groupe spatial P1.

Le contenu atomique par maille correspondant à $3(Mn_8Si_2C)$, soit $Mn_{24}Si_6C_3$, conduirait à une valeur de $D_{ca1} = 7,08$. Ceci dépasse de beaucoup la précision admise sur le résultat. Aussi une formule du type

^{*} La maille pseudohexagonale a été retenue afin de tenir compte des essais antérieurs de caractérisation de cette phase (Spinat *et al.*, 1972).

 $Mn_{23}Si_5C_4$, pour laquelle $D_{cal} = 6,75$, paraît plus satisfaisante.

Nous aborderons donc la détermination de la structure sur cette dernière base en sachant que la formule chimique ne pourra être connue avec précision qu'en fin d'étude puisque le composé est non stoechiométrique. Pour cette même raison nous garderons la dénomination ' Mn_8Si_2C ' tout au long de cet article.

Le cristal a permis de recueillir 3229 réflexions mesurées à l'aide d'un diffractomètre automatique Nonius (trois cercles) utilisant la radiation $K\alpha$ du molybdène. Celles-ci ont été corrigées par les facteurs de Lorentz et polarisation. Des corrections d'absorption ont été effectuées afin de tenir compte de la forme allongée du cristal – taille approximative $0,10 \times 0,18 \times 0,45$ mm (Fig. 1). Le programme utilisé est celui de Busing & Levy modifié par Laruelle – qui dans le cas présent s'est avéré d'une application facile malgré la symétrie triclinique, les faces parallèles à la direction d'allongement étant du type (001), (T01).

Détermination de la structure

La structure a été déterminée par méthodes directes en utilisant le programme MULTAN (Germain, Main & Woolfson, 1971). A partir de quatre phases et de 466 facteurs de structure normalisés de modules supérieurs à 1,0, la solution a été donnée par la séquence de phases la plus probable (ABSFOM=1,22, PSI-

Tableau	1.	Paramètres	atomiaues	de	la	phase	'Mn	Si,	C'
1				***		primoc		~~~/	· •

		x	У	Z	В
Mn(1)	1	2200 (0)	5600 (0)	5700 (0)	0,3 (0,1)
Mn(2)	2	4545 (21)	59 (24)	5319 (14)	0,0(0,1)
Mn(3)	3	5135 (26)	3869 (28)	6012 (17)	0,2(0,1)
Mn(4)	4	2117 (23)	6357 (25)	2813 (15)	0,1(0,1)
Mn(5)	5	8892 (15)	2108 (17)	2049 (13)	0,1(0,1)
Mn(6)	6	6568 (23)	7619 (26)	2427 (15)	0,2 (0,1)
Mn(7)	7	8982 (24)	1173 (26)	4529 (16)	0,3 (0,1)
Mn(8)	8	2112 (25)	5914 (27)	8395 (16)	0,2 (0,1)
Mn(9)	9	6720 (24)	8309 (25)	6984 (15)	0,2 (0,1)
Mn(10)	10	8971 (25)	1765 (26)	9273 (15)	0,1 (0,1)
Mn(11)	11	4396 (23)	9250 (24)	382 (15)	0,1 (0,1)
Mn(12)	12	1319 (23)	1892 (26)	7107 (15)	0,1 (0,1)
Mn(13)	13	4508 (22)	320 (24)	7723 (15)	0,1 (0,1)
Mn(14)	14	6528 (24)	7123 (26)	9633 (16)	0,3 (0,1)
Mn(15)	15	9947 (26)	7624 (28)	6283 (17)	0,2 (0,1)
Mn(16)	16	3610 (23)	2760 (24)	9236 (15)	0,0 (0,1)
Mn(17)	17	9787 (23)	5803 (26)	572 (16)	0,1 (0,1)
Mn(18)	18	7489 (24)	4801 (25)	8150 (15)	0,1 (0,1)
Mn(19)	19	1070 (27)	9933 (29)	1311 (18)	0,2 (0,1)
Mn(20)	20	5944 (23)	3656 (25)	1479 (15)	0,0 (0,1)
Mn(21)	21	7869 (2 6)	4480 (29)	4130 (17)	0,3 (0,1)
Mn(22)	22	3258 (23)	3157 (25)	3529 (15)	0,0 (0,1)
Mn–Si	23	597 (30)	8755 (32)	3728 (20)	0,0 (0,1)
Si(1)	24	529 (64)	8802 (69)	8773 (37)	0,1 (0,1)
Si(2)	25	8285 (40)	2923 (44)	6522 (25)	0,1 (0,2)
Si(3)	26	2742 (42)	4629 (46)	908 (26)	0,0 (0,2)
Si(4)	27	6100 (40)	7070 (40)	4560 (25)	0,3 (0,2)
Si(5)	28	5093 (27)	357 (29)	2899 (20)	0,0 (0,2)
C (1)	29	4400 (99)	5041 (107)	7739 (68)	0,2 (0,6)
C(2)	30	6749 (8 2)	2708 (92)	56 (58)	0,1 (0,5)
C(3)	31	2039 (107)	975 (100)	5422 (74)	0,2 (0,6)
C(4)	32	8985 (111)	6387 (106)	2197 (77)	0,5 (0,6)

ZERO=0,207.10⁴). Une synthèse de Fourier tridimensionnelle a donné l'ensemble des atomes manganèse et silicium. Nous avons précisé leur nature à l'aide de sections de densité électronique.

Un affinement par la méthode des moindres carrés (Busing, Martin & Levy, 1962) sur les coordonnées atomiques et sur les facteurs de température individuels isotropes des 28 atomes définis précédemment, a permis de positionner sans ambiguïté les cinq atomes de silicium et les 23 atomes de manganèse. Les facteurs de diffusion utilisés sont ceux donnés par *International Tables for X-ray Crystallography* (1962). L'utilisation conjointe d'une série différence de Fourier tridimensionnelle et de considérations géométriques, a permis de localiser les atomes de carbone. Quatre atomes ont

Fig. 1. Le cristal de 'Mn₈Si₂C'.

Fig. 2. Schéma structural (a) ' Mn_8Si_2C ', (b) Mn_5Sic . La maille est représentée en trait fin et les plans atomiques en trait fort.

été ainsi dénombrés dans la maille. A partir des positions de ces derniers et de celles des atomes de manganèse et de silicium, un nouvel affinement mené sur les coordonnées atomiques puis sur les facteurs de multiplicité a montré que l'occupation des sites correspondant aux atomes de carbone est complète et qu'il existe dans la structure un site mixte Mn–Si dont le rapport atomique Mn/Si est de 1,5 (Tableau 1).

Le dernier affinement effectué à partir de 2027 réflexions (Fobs $\geq 0,08$ Fmax) sur les coordonnées atomiques et les facteurs de température individuels isotropes a conduit à un facteur R=0,12. Les facteurs de température obtenus sont du même ordre de grandeur que ceux signalés pour ce type de composé (*B* global $\simeq 0,1$ Å² dans Mn₅SiC). Le Tableau 1 donne les paramètres atomiques avec les écarts-type.*

Formule chimique

La structure ainsi décrite conduit, pour le cristal étudié, à la formule chimique: $Mn_{22,6}Si_{5,4}C_4$ (*D*cal = 6,703). Ce résultat confirme bien les hypothèses émises précédemment lors de la discussion de la densité, et montre que la non-stoechiométrie ne provient que de la substitution manganèse-silicium dans un seul site, tous les sites étant totalement occupés.

Description et discussion de la structure

Schéma structural

Une représentation spatiale des atomes montre que la structure peut être décrite comme formée d'un ensemble de plans parallèles à ($\overline{101}$) sensiblement équidistants les uns des autres ($\simeq 1,28$ Å) [Fig. 2(*a*)]. Les écarts de ces plans à la planéité et au parallélisme ne dépassent pas quelques degrés. La succession est du type:

---- ABA'CD---- .

Le plan A est un plan 'purement manganèse' défini par les atomes Mn(6), Mn(7), Mn(8), Mn(11), Mn(12),

Fig 3. Projection orthogonale (*ORTEP*; Johnson, 1965) sur ($\overline{101}$) des plans *A*, *B* et *A'* de la structure de la phase 'Mn₈Si₂C'. Les traits fins matérialisent les liaisons du plan *A'* et les traits épais celles du plan *A*. Les sphères isolées représentent les atomes de manganèse et de carbone ($r_{Mn} > r_C$) du plan intermédiaire *B*. Les atomes sont numérotés de 1 à 32 (*cf*. Tableau 1).

^{*} La liste des facteurs de structure a été déposée à la British Library Lending Division (Supplementary Publication No. SUP 30707: 13 pp., 1 microfiche). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

Mn(15), Mn(16), Mn(20), Mn(21). Il en est de même du plan A' qui contient les atomes Mn(2), Mn(3), Mn(4), Mn(9), Mn(10), Mn(17), Mn(18), Mn(19), Mn(22). Les motifs structuraux de ces deux plans sont identiques aux distorsions près, dues à la symétrie triclinique, et se déduisent l'un de l'autre par une translation d'environ 2,55 Å suivant la direction perpendiculaire à ($\overline{101}$) (Fig. 3).

Le motif du plan D est également identique à celui du plan A et se déduit de ce dernier par la translation de réseau c. Ceci se traduit en projection orthogonale sur A, par un déplacement relatif des motifs de A et de D de $\frac{1}{5}$ de période suivant [$\overline{121}$] (Fig. 4).

C est un plan 'purement silicium' formé des atomes Si(1), Si(2), Si(3), Si(4), Si(5). Le plan B renferme à la fois les atomes de manganèse Mn(1), Mn(5), Mn(13), Mn(14), les atomes de carbone C(1), C(2), C(3), C(4) et le site mixte Mn-Si.

Cette description fait apparaître une analogie structurale évidente, entre les phases Mn_5SiC et ' Mn_8Si_2C '. Nous retrouvons dans ces composés deux types de réseaux qui se ramènent aux schémas et hypothèses de structures faites par Frank & Kasper (1958, 1959), c'est-à-dire des plans 'purement manganèse' de forte densité définissant l'ossature de la structure, entre lesquels viennent s'insérer alternativement des plans de silicium et des plans manganèse-carbone de faible densité (Fig. 2).

Dans la phase ' Mn_8Si_2C ' le premier type de réseau est défini par l'ensemble des plans A, A', D... à l'intérieur desquels les atomes de manganèse sont liés entre eux. Dans ces plans, le motif structural fondamental est décrit par l'assemblage de figures géométriques sensiblement régulières à savoir: quatre triangles, quatre pentagones et un carré (Fig. 5). Le composé Mn_5SiC a également pour motif de base, quatre triangles et quatre pentagones, et ne diffère de ' Mn_8Si_2C ' que par l'absence du carré. L'association triangle, pentagone, carré constitue donc l'originalité de la structure de la phase ' Mn_8Si_2C ' et vient s'ajouter aux hypothèses de Frank & Kasper (Fig. 5).

Le second type de réseau est formé par les plans d'insertion B et C qui contiennent, entre autres, les atomes de carbone.

Comparaison entre Mn₅SiC, 'Mn₈Si₂C' et 'Mn₅Si'

La description précédente permet d'affirmer que le composé ' Mn_8Si_2C ', comme Mn_5SiC , présente une grande similitude avec les phases intermétalliques complexes (μ , M...).

Fig. 4. Projection orthogonale (*ORTEP*; Johnson, 1965) sur ($\overline{101}$) des plans A', C et D de la structure de la phase 'Mn₈Si₂C'. Les traits fins matérialisent les liaisons du plan A' et les traits épais celles du plan D. Les sphères isolées représentent les atomes de silicium du plan intermédiaire C. Les atomes sont numérotés de 1 à 32 (cf. Tableau 1).

Fig. 5. Comparaison entre les structures de (a) MgZn₂, (b) Mn₅SiC, (c) 'Mn₈Si₂C', (d) 'Mn₅Si'. Les traits forts définissent les motifs structuraux. Les cercles ou les croix isolés représentent les atomes appartenant aux plans intermédiaires de faible densité.

Lors de l'étude de Mn₅SiC, nous avons montré que le motif structural était le même que celui des phases de Laves du type MgZn₂ (Friauf, 1927), mais qu'il ne se déduisait pas directement du motif de 'Mn₅Si' (Fig. 5). Aussi pouvions-nous nous attendre à ce que le composé 'Mn₈Si₂C', qui possède une contribution pondérale très faible en carbone et un rapport Mn/Si très voisin de celui des phases 'Mn₅Si' et Mn₅SiC, assure la transition structurale entre ces deux dernières. Il n'en est rien, car la seule différence entre les motifs de 'Mn₈Si₂C' et de Mn₅SiC est la présence d'un carré (Fig. 5) qui n'apparaît pas dans le schéma structural de 'Mn₅Si'. De plus ce ne sont pas des considérations stoechiométriques qui peuvent justifier cette différence comme nous l'avions suggéré lors de l'étude de Mn₅SiC. Ceci nous amène donc à conclure que le carbone joue un rôle déterminant dans ces arrangements atomiques. En effet, dans 'Mn₅Si' les seules lacunes existant sont tétraédriques et de ce fait trop petites pour accepter un élément d'insertion, tel que le carbone, sans changements structuraux profonds; aussi la présence de ce dernier dans Mn₅SiC et 'Mn₈Si₂C' impose dans la structure l'existence de cavités suffisamment grandes pour l'accueillir.

Les carbosiliciures de manganèse présentent donc une double filiation qui les fait dépendre à la fois des carbures et des phases intermétalliques complexes.

Description des sites atomiques

Comme dans les carbures de type cémentite tels que Mn₃C, Mn₅C₂, Mn₇C₃ (Fasiska & Jeffrey, 1965; Sénateur, 1967), les quatre atomes de carbone occupent, dans le composé 'Mn₈Si₂C', les centres de gravité de prismes droits à bases triangulaires dont les six sommets sont définis par des atomes métalliques. Du fait de la symétrie triclinique, ces cavités présentent de légères distorsions (distances Mn-C comprises entre 1,83 et 2,26 Å). Cette analogie s'étend aussi aux seconds voisins qui sont au nombre de trois (Fig. 4) situés dans le plan médian du prisme droit (plan B), les neuf atomes dessinant ainsi un tétrakaidécaèdre. De plus, comme dans les carbures, les atomes de carbone appartenant à deux prismes consécutifs ne sont pas liés entre eux puisque les distances C-C sont supérieures ou égales à 2,96 Å.

Les cinq sites occupés uniquement par les atomes de silicium se répartissent en deux groupes:

- trois sites possèdant 12 proches voisins. La Fig. 4 montre nettement que l'environnement est constitué d'un antiprisme à bases pentagonales surmontées d'une pyramide à chaque extrémité, ce qui définit un icosaèdre.

- deux sites présentant un environnement du même type que le précédent, mais avec seulement dix proches voisins qui proviennent du remplacement d'une des deux pyramides à base pentagonale par un carré (Fig. 4).

Les coordinences de 10 et 12 trouvées pour les sites du silicium concordent bien avec les résultats donnés pour bon nombre de composés: V_6Si_5 (Spinat, Fruchart & Herpin, 1970), Ti₃SiC₂ (Jeitschko & Nowotny, 1967) Mn₅SiC.... De plus ici les atomes de silicium ne possèdent dans leur environnement immédiat aucun atome de carbone pas plus que de silicium. Comme dans le cas de la phase Mn₅SiC nous n'avons donc pas de liaisons Si-C ou Si-Si et ceci reste vrai même pour le site mixte Mn-Si.

Quant aux sites 'purement manganèse' avec 11, 12 et 14 proches voisins, ils correspondent aux résultats mentionnés dans la littérature pour les composés métalliques du manganèse-Mn β (Preston, 1928), Mn₃Si (Aronsson, 1960), Mn₃SiC....

Le caractère original de cette phase réside dans le site mixte Mn-Si qui présente un environnement à huit atomes de manganèse. Celui-ci provient de l'existence dans le motif structural d'un carré. Cependant

Tableau 2. Distances interatomiques observées (Å) dans la phase 'Mn₈Si₂C'

Précision sur les distances: Mn-Mn \simeq 0,02; Mn-Si \simeq 0,03; Mn-C \simeq 0,06 Å.

Atomes CN 14 CN 12 CN 12

8 9 10 11 15 19 21 22	3.10 2.62 2.71 2.79	3.10 2.97 2.55	2.62 2.97 2.92 2.78	2.71 2.92 2.71	2.79 2.55 2.75	2.78 2.71 2.84	2.75 2.62	2.84 2.62	2.71 2.69 2.55 2.73 3.12	2.80 2.85 2.65 3.01 2.73	2.58 2.58 2.75 2.68 2.76	2.65 2.69 2.65 2.60 2.87	2.55 2.86 2.90 2.92	3.04 2.96 2.88 2.55	2.73 2.89 2.90 2.88	3.01 3.03 2.57 2.72
1 5 13 14	2.71 2.58 2.65	2.69 2.58 2.69	2.80 2.75 2.65	2.85 2.68 2.60	2.55 2.76	2.65 2.87	2.73 3.01	3.12 2.73					2.55 2.41	2.87 2.58	2.56	2.79 2.49
4 6 7		3.04		3.04 2.73	3.03	2.96 2.89	2.50 2.88 2.90 2.57	2.55 2.88 2.72	2.33	2.58 2.56 2.49	2.41	2.82	2.81	2.65	2.65	2.81
3 12 16 17 18 20	2.78 2.70 2.81 2.66	2.74 2.70 2.71	2.80 2.73 2.79 2.69	2.71 2.71 2.78	2.82 2.62 2.62	2.79 2.52 2.84	2.66 2.69	2.53 2.78	2.61 2.55	2.57 2.53	2.66 2.69 2.60 2.59	2.52 2.66 2.54 2.71	2.46	2.41	2.64	2.70
24 25 26	2.65 2.76 2.61	2.67 2.68	2.67 2.80 2.59	2.63 2.68	2.57 2.70	2.60 2.71	2.53	2.73	2.48	2.59	2.62 2.59	2.52 2.64	2.37	2.46	2.57	2.57
27 28		2.50		2.57	2.65	2.70	2.56 2.63	2.46 2.77	2.62	2.40			2.80 2.47	2.70 2.34	2.17 2.51	2.37 2.58
23					2.63	2.49	2.49	2.51					2.53	2.51	2.47	2.51
29 30 31 32	2.03	2.07	2.09	2.03	2.11	2.21	2.22	2.26					2.00	2.02	2.12	2.08
	1 3	17	16	17	18	20	24	25	34			1	1 00	20		-
Atomes	CN 11	CN 11	เห้าเ	CN 11	(N 11	(11 10)	CN 12	CN 12	CN 12	CN 10	CN 10	CN 8	CN 6	(N 6	CN 6	CN 6
Atomes 8 9 10 11 15 19 21 22	CN 11 2.74 2.82 2.66 2.53	CN 11 2.78 2.70 2.80 2.62	CH 11 2.70 2.73 2.71 2.79	CN 11 2.81 2.79 2.71 2.52	(N 11 2.66 2.71 2.69 2.62	2.78 2.84 2.69 2.78	CN 12 2.65 2.67 2.67 2.63 2.57 2.60	2.76 2.68 2.80 2.70 2.53	CN 12 2.61 2.59 2.68 2.71 2.73	2.50 2.65 2.56 2.46	28 (N 10 2.57 2.70 2.63 2.77	2.63 2.49 2.49 2.51	2.03 2.07	2.09 2.03	2.11 2.26	2.21 2.22
Atomes 8 9 10 11 15 19 21 22 1 5 13 - 14	CN 11 2.74 2.82 2.66 2.53 2.61 2.66	CN 11 2.78 2.70 2.80 2.62 2.55 2.69	CH 11 2.70 2.73 2.71 2.79 2.60 2.52	(N 11 2.81 2.79 2.71 2.52 2.57 2.57 2.66	(N 11 2.66 2.71 2.69 2.62 2.59 2.51	(N 11 2.78 2.84 2.69 2.78 2.53 2.53 2.71	CN 12 2.65 2.67 2.63 2.57 2.60 2.60 2.62 2.52	CN 12 2.76 2.68 2.80 2.70 2.53 2.48 2.59	(N 12 2.61 2.59 2.68 2.71 2.73 2.59 2.64	27 (N 10 2.50 2.65 2.56 2.46 2.62	28 (N 10 2.57 2.70 2.63 2.77 2.40	2.63 2.49 2.51	2.03 2.07	2.09 2.03	2.11 2.26	2.21 2.22
Atomes 8 9 10 11 15 13 14 24 6 7	CN 11 2.74 2.82 2.66 2.53 2.61 2.66 2.46	(N 11 2.78 2.70 2.80 2.62 2.55 2.69 2.70	CH 11 2.70 2.73 2.71 2.79 2.60 2.52	CN 11 2.81 2.79 2.71 2.52 2.57 2.66 2.41	(N 11 2.66 2.71 2.69 2.62 2.62 2.59 2.51	CN 11 2.78 2.84 2.69 2.78 2.53 2.71 2.61	CN 12 2.65 2.67 2.67 2.63 2.57 2.60 2.62 2.52	CN 12 2.76 2.68 2.80 2.70 2.53 2.48 2.59 2.37 2.57	(N 12 2.61 2.59 2.68 2.71 2.73 2.59 2.64 2.64 2.57	2.50 2.65 2.56 2.46 2.62 2.62 2.62 2.62 2.70 2.70 2.17 2.37	2.57 2.57 2.70 2.63 2.77 2.40 2.47 2.34 2.51 2.58	2.63 2.49 2.51 2.51 2.51 2.51 2.51	2.03 2.07	2.09 2.03	2.11 2.26 2.00 2.08	2.21 2.22 2.22 2.02 2.12
Atomes 8 9 10 11 15 19 21 22 1 5 13 14 - 2 4 5 7 - 3 12 6 17 18 20 20 - 20 - 20 - 20 - 21 - 22 - 21 - 22 - 21 - 22 - 21 - 22 - 21 - 22 - - - - - - - - - - - - -	CN 11 2.74 2.82 2.66 2.53 2.61 2.66 2.46 2.61 2.61 2.63 2.61 2.66 2.33	(N 11 2.78 2.70 2.80 2.62 2.55 2.69 2.70 2.53 2.30	CH 11 2.70 2.73 2.71 2.79 2.60 2.52 2.30 2.30 2.56 2.41	CN 11 2.81 2.79 2.71 2.52 2.55 2.45	(N 11 2.66 2.71 2.69 2.62 2.59 2.54 2.33 2.56 2.55	CN 11 2.78 2.84 2.69 2.78 2.53 2.71 2.61 2.61 2.41 2.45	CN 12 2.65 2.67 2.67 2.67 2.57 2.57 2.50 2.52 2.52 2.52 2.52 2.52 2.52 2.52	CN 12 2.76 2.68 2.80 2.70 2.53 2.48 2.59 2.37 2.37 2.35 2.37 2.35	(N 12 2.61 2.59 2.68 2.71 2.73 2.59 2.64 2.57 2.46 2.57 2.46 2.57 2.42 2.35 2.42	CN 10 2.50 2.65 2.56 2.46 2.62 2.62 2.80 2.70 2.17 2.37 2.31	2.57 2.57 2.70 2.63 2.77 2.40 2.47 2.34 2.51 2.58 2.35	2.63 2.49 2.51 2.51 2.51 2.51 2.51 2.51	2.03 2.07 2.07 2.07 2.07 2.14 2.07 1.96 2.05	2.09 2.03 2.03 2.03	2.11 2.26 2.00 2.08 1.98 2.02	2.21 2.22 2.02 2.12
Atomes 8 9 10 11 15 19 21 22 1 5 13 14 4 6 7 7 12 12 12 12 12 13 12 12 13 12 12 12 13 12 12 12 12 12 12 12 12 12 12	QN 11 2.74 2.82 2.53 2.61 2.66 2.46 2.33 2.33 2.33	 CN 11 2.78 2.70 2.80 2.62 2.55 2.69 2.70 2.53 2.30 2.38 2.35 	CH 11 2.70 2.73 2.71 2.79 2.60 2.52 2.30 2.56 2.30 2.56 2.41 2.35 2.42	(N 11 2.81 2.79 2.71 2.52 2.57 2.66 2.41 2.55 2.45 2.41 2.47 2.35	(N 11 2.66 2.71 2.69 2.59 2.51 2.53 2.55 2.55 2.42 2.37	2.78 2.84 2.69 2.78 2.53 2.71 2.61 2.41 2.45 2.42	CN 12 2.65 2.67 2.63 2.57 2.60 2.52 2.52 2.52 2.52 2.38 2.35 2.47 2.42	(N 12 2.76 2.68 2.80 2.70 2.53 2.48 2.59 2.57 2.57 2.57 2.37 2.35 2.37	(N 12 2.61 2.59 2.68 2.71 2.73 2.59 2.64 2.57 2.42 2.35 2.42	2.50 2.65 2.56 2.46 2.62 2.70 2.70 2.70 2.77 2.37 2.31	28 (N 10 2.57 2.70 2.63 2.77 2.40 2.47 2.34 2.51 2.58 2.35	2.63 2.49 2.51 2.51 2.51 2.51 2.51 2.51	2,03 2.07 2.14 2.14 2.07 1.96 2.05	2.09 2.03 2.03 2.03 2.03	2.11 2.26 2.00 2.08 1.98 2.02	2.21 2.22 2.02 2.12 1.91 1.94
Atomes 8 9 9 10 11 15 15 12 22 22 1 5 13 14 4 4 6 7 7 18 20 24 25 22 27 28	CN 11 2.74 2.82 2.66 2.53 2.61 2.66 2.46 2.46 2.33 2.33 2.33 2.33	(N 11 2.78 2.70 2.80 2.55 2.62 2.55 2.69 2.53 2.30 2.33 2.33	CH 11 2.70 2.73 2.71 2.79 2.60 2.52 2.30 2.56 2.41 2.35 2.42	(N 11 2.81 2.79 2.71 2.52 2.55 2.66 2.41 2.55 2.41 2.55 2.41 2.35	(N 11 2.66 2.71 2.69 2.62 2.59 2.54 2.33 2.56 2.55 2.42 2.37	(N 11 2.78 2.84 2.69 2.78 2.73 2.73 2.71 2.61 2.41 2.41 2.45 2.42 2.35	CN 12 2.65 2.67 2.63 2.52 2.60 2.62 2.52 2.52 2.38 2.35 2.47 2.42	(N 12 2.76 2.68 2.80 2.70 2.53 2.48 2.59 2.37 2.37 2.37 2.35 2.37	(N 12 2.61 2.59 2.68 2.71 2.73 2.59 2.64 2.46 2.57 2.42 2.35 2.42	2.50 2.55 2.55 2.56 2.46 2.62 2.80 2.70 2.37 2.37 2.31	28 (N 10 2.57 2.70 2.63 2.77 2.10 2.47 2.51 2.51 2.58 2.35	2.53 2.49 2.51 2.51 2.51 2.51	2.03 2.07 2.14 2.14 2.14 2.07 2.07	2.09 2.03 2.03	2.11 2.26 2.00 2.08 1.98 2.02	2.21 2.22 2.02 2.12 1.91 1.94
Atomes 8 9 9 10 11 15 19 21 22 1 15 13 12 21 22 4 6 6 7 7 16 17 18 19 21 22 22 22 24 25 26 27 28 27 28 27 20 20 20 20 20 20 20 20 20 20	CN 11 2.74 2.82 2.66 2.53 2.61 2.66 2.46 2.46 2.46 2.46 2.46 2.46 2.33 2.33 2.33	(N 11 2.78 2.70 2.62 2.62 2.55 2.69 2.70 2.53 2.30 2.33	CH 11 2.70 2.73 2.71 2.79 2.60 2.52 2.30 2.52 2.30 2.35 2.41 2.35 2.42	(N 11 2.81 2.79 2.71 2.52 2.57 2.66 2.41 2.41 2.41 2.41 2.43	(N 11 2.66 2.71 2.69 2.62 2.59 2.54 2.33 2.56 2.55 2.42 2.37	CN 11 2.78 2.84 2.69 2.78 2.53 2.71 2.53 2.71 2.61 2.41 2.41 2.45 2.42 2.35	CN 12 2.65 2.67 2.63 2.52 2.60 2.62 2.52 2.52 2.35 2.35 2.47 2.12	(N 12 2.76 2.68 2.80 2.70 2.53 2.48 2.59 2.37 2.37 2.37 2.37 2.37	(N 12 2.61 2.59 2.68 2.71 2.73 2.59 2.64 2.57 2.42 2.35 2.42 2.35 2.42	2.50 2.55 2.56 2.46 2.46 2.46 2.46 2.46 2.40	28.57 2.57 2.70 2.63 2.77 2.70 2.77 2.10 2.47 2.34 2.51 2.58 2.35	2.63 2.49 2.51 2.51 2.51	2.03 2.07 2.14 2.14 2.14 2.14 2.07	2.09 2.03 2.03 2.03 2.01 2.22 1.83	2.11 2.26 2.00 2.08 1.98 2.02	2.21 2.22 2.02 2.12 1.91 1.94

cette forme de cavité n'est pas d'une totale nouveauté dans les composés du manganèse puisqu'elle existe, par exemple, dans le siliciure Mn₃Si, cité plus haut.

Dans cette dernière phase, comme dans ' Mn_8Si_2C' , ce site accueille aussi bien un atome de manganèse qu'un atome de silicium.

Ainsi, pour tous les atomes, à une coordinence correspond un type de site, excepté pour la coordinence 12 qui présente trois sortes de sites distincts suivant la nature du plan auquel appartiennent les atomes concernés.

Distances interatomiques

Globalement les distances interatomiques (Tableau 2) sont en bon accord, d'une part avec les rayons atomiques (r_{Mn} =1,27 Å, r_{Si} =1,17 Å, r_{C} =0,77 Å) (Fruchart, 1963) et d'autre part avec les distances de liaison couramment admises dans ces composés (voir composés cités précédemment). Seule la liaison Mn(6)– Si(4), 2,17 Å, est un peu courte mais ne constitue pas une anomalie compte tenu de la précision obtenue avec la symétrie triclinique.

Nous avons signalé dans le paragraphe Schéma structural que les plans ABA'C ... étaient sensiblement équidistants; en fait l'espacement entre A-A' (2,76 Å) est plus grand que celui existant entre A'-D (2,38 Å). Cette différence s'explique par les observations structurales. En effet, les atomes du plan B (Mn-C) se situent dans des prismes droits qui sont à bases triangulaires pour les carbone, à bases pentagonales pour les manganèse, et à bases carrées pour le site mixte, alors que les atomes de silicium du plan C occupent des cavités du type antiprisme (icosaèdres). De simples considérations stériques suffisent alors à montrer que la distance entre les bases des prismes est supérieure à celle existant entre les bases des antiprismes. Nous avons déjà fait une constatation du même ordre dans le cas de la phase Mn₅SiC (Spinat, 1971).

Interprétation des solutions solides avec le molybdène et le fer

Substitution par le molybdène

L'existence de la solution solide $(Mn_{1-x}Mo_x)_8Si_2C$ avec $x \le 0,1$ est due à la présence dans la structure de sites à 14 voisins. En effet, dans les composés à base de manganèse les atomes de molybdène ($r_{Mo} > r_{Mn}$), lors de la substitution, n'occupent que les sites de manganèse ayant le plus grand nombre de voisins, c'est à dire 14-16 (Shoemaker, Shoemaker & Mellor, 1965; Spinat, 1971). Cependant, il est à noter que contrairement au cas de Mn₅SiC (Spinat et al., 1970) la limite x=0,1 ne correspond pas ici à l'occupation complète de tous les sites de coordinence 14. Ceci est dû à la symétrie triclinique qui donne aux cavités à 14 voisins des tailles variables et qui, de plus, leur permet de subir des déformations. Mais il existe une limite à la dilatation, acceptable par la structure, qui rend compte du domaine de substitution observé.

Substitution par le fer

La solution solide $(Mn_{1-x}Fe_x)_8Si_2C$ est totale (Spinat et al., 1972). Comme l'ont montré les études par diffraction de neutrons sur les phases R (Shoemaker et al., 1965) et sur $(Mn_{0.5}Fe_{0.5})_5SiC$ (Spinat, 1974), le fer se substitue au manganèse $(r_{Fe} < r_{Mn})$ dans les sites de coordinence inférieure ou égale à 12. Lors de la substitution dans le composé 'Mn_8Si_2C', le fer va occuper successivement les sites à 8, 11 puis 12 proches voisins. A ce stade l'ensemble de la structure subi une contraction qui peut avoir pour effet de transformer les sites à 14 voisins en sites à 11 ou 12. L'existence du composé totalement substitué 'Fe₈Si₂C' justifie cette hypothèse.

L'étude de la solution solide $(Mn_{1-x}Fe_x)_5SiC$ confirme l'importance de la symétrie lors des déformations qui ont lieu au moment des substitutions. En effet la limite de cette solution solide x=0,6, correspond à l'occupation par le fer de tous les sites de coordinence inférieure ou égale à 12. Pour x>0,6 la structure de symétrie orthorhombique de la phase Mn_5SiC ne pouvant subir de déformations importantes, est détruite pour donner naissance à la structure triclinique du composé 'Mn₈Si₂C' substitué. Cette transformation est rendue possible par un rapport Mn/Si très voisin dans les deux composés.

Conclusions

Cette étude a montré qu'il existe une très grande analogie entre les deux carbosiliciures de manganèse Mn_5SiC et ' Mn_8Si_2C '. Elle a mis en évidence le rôle déterminant du carbone dans la définition du motif structural, ce qui relie le composé ' Mn_8Si_2C ' aux carbures de type cémentite, sans rejeter pour autant sa parenté avec les phases intermétalliques complexes.

De plus l'existence de la solution solide totale $(Mn_{1-x}Fe_x)_8Si_2C$ nous permet d'accèder à la structure de 'Fe₈Si₂C'. Or la connaissance des phases Fe–Si–C, jusqu'à ce jour inaccessibles directement du fait de leur très grande instabilité, est d'une importance capitale

en métallurgie puisqu'elles sont responsables des propriétés de certaines fontes et aciers spéciaux.

Nous remercions M B. Bachet qui a pris une part importante dans l'obtention des données diffractométriques.

Références

- ARONSSON, B. (1960). Acta Chem. Scand. 14, 1414-1418.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). Oak
- Ridge National Laboratory, Oak Ridge, Tennessee. FASISKA, E. J. & JEFFREY, G. A. (1965). Acta Cryst. 19, 463–471.
- FRANK, F. C. & KASPER, J. S. (1958). Acta Cryst. 11, 184– 190.
- FRANK, F. C. & KASPER, J. S. (1959). Acta Cryst. 12, 483-499.
- FRIAUF, A. (1927). Phys. Rev. 29, 34.
- FRUCHART, R. (1963). Bull. Soc. Chim. Fr. 439, 2652-2658.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JEITSCHKO, W. & NOWOTNY, H. (1967). Mh. Chem. 98, 329– 337.
- JOHNSON, C. K. (1965). Oak Ridge National Laboratory Report No. ORNL-3794.
- PRESTON, G. D. (1928). Phil. Mag. 5, 1207.
- SÉNATEUR, J. P. (1967). Ann. Chim. 2, 103-122.
- SÉNATEUR, J. P., SPINAT, P. & FRUCHART, R. (1965). Colloque Internationale du CNRS, Orsay 127–134.
- SHOEMAKER, C. B. & SHOEMAKER, D. P. (1971). Acta Cryst. B27, 227–235.
- SHOEMAKER, C. B., SHOEMAKER, D. P. & MELLOR, J. (1965). Acta Cryst. 18, 37-44.
- SPINAT, P. (1971). Thèse Doctorat d'Etat, Université Paris VI.
- SPINAT, P. (1975). Bull. Soc. fr. Minér. Crist. A paraître.
- SPINAT, P., FRUCHART, R. & HERPIN, P. (1970). Bull. Soc. fr. Minér. Crist. 93, 23-36.
- SPINAT, P., FRUCHART, R., KABBANI, M. & HERPIN, P. (1970). Bull. Soc. fr. Minér. Crist. 93, 171–184.
- SPINAT, P., SÉNATEUR, J. P., FRUCHART, R. & HERPIN, P. (1972). C.R. Acad. Sci. Paris, 274, 1159–1162.